Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 33: 925-937, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680985

RESUMO

Rare skeletal diseases are still in need of proper clinically available transfection agents as the major challenge for first-in-human translation relates to intrinsic difficulty in targeting bone without exacerbating any inherent toxicity due to used vector. SiSaf's silicon stabilized hybrid lipid nanoparticles (sshLNPs) constitute next-generation non-viral vectors able to retain the integrity and stability of constructs and to accommodate considerable payloads of biologicals, without requiring cold-chain storage. sshLNP was complexed with a small interfering RNA (siRNA) specifically designed against the human CLCN7G215R mRNA. When tested via single intraperitoneal injection in pre-puberal autosomal dominant osteopetrosis type 2 (ADO2) mice, carrying a heterozygous mutation of the Clcn7 gene (Clcn7G213R), sshLNP, this significantly downregulated the Clcn7G213R related mRNA levels in femurs at 48 h. Confirmatory results were observed at 2 weeks and 4 weeks after treatments (3 intraperitoneal injections/week), with rescue of the bone phenotype and demonstrating safety. The pre-clinical results will enable advanced preclinical development of RNA-based therapy for orphan and genetic skeletal disorders by safely and effectively delivering biologicals of interest to cure human systemic conditions.

2.
AAPS PharmSciTech ; 23(8): 302, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385204

RESUMO

Progesterone (PRG) and testosterone (TST) were impregnated on mesoporous silica (ExP) particles via supercritical carbon dioxide (scCO2) processing at various pressures (10-18 MPa), temperatures (308.2-328.2 K), and time (30-360 min). The impact of a co-solvent on the impregnation was also studied at the best determined pressure and temperature. The properties of the drug embedded in silica particles were analysed via gas chromatography (GC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and nitrogen adsorption. An impregnation of 1 to 82 mg/g for PRG and 0.1 to 16 mg/g for TST was obtained depending on the processing parameters. There was a significant effect of pressure, time, and co-solvent on the impregnation efficiency. Generally, an increase in time and pressure plus the use of co-solvent led to an improvement in drug adsorption. Conversely, a rise in temperature resulted in lower impregnation of both TST and PRG on ExP. There was a substantial increase in the dissolution rate (> 90% drug release within the first 2 min) of both TST and PRG impregnated in silica particles when compared to the unprocessed drugs. This dissolution enhancement was attributed to the amorphisation of both drugs due to their adsorption on mesoporous silica.


Assuntos
Progesterona , Dióxido de Silício , Dióxido de Silício/química , Solubilidade , Dióxido de Carbono/química , Testosterona , Solventes/química
3.
Int J Pharm ; 626: 122135, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028083

RESUMO

Three-dimensional (3D) printing is becoming an attractive technology for the design and development of personalized paediatric dosage forms with improved palatability. In this work micro-extrusion based printing was implemented for the fabrication of chewable paediatric ibuprofen (IBU) tablets by assessing a range of front runner polymers in taste masking. Due to the drug-polymer miscibility and the IBU plasticization effect, micro-extrusion was proved to be an ideal technology for processing the drug/polymer powder blends for the printing of paediatric dosage forms. The printed tablets presented high printing quality with reproducible layer thickness and a smooth surface. Due to the drug-polymer interactions induced during printing processing, IBU was found to form a glass solution confirmed by differential calorimetry (DSC) while H-bonding interactions were identified by confocal Raman mapping. IBU was also found to be uniformly distributed within the polymer matrices at molecular level. The tablet palatability was assessed by panellists and revealed excellent taste masking of the IBU's bitter taste. Overall micro-extrusion demonstrated promising processing capabilities of powder blends for rapid printing and development of personalised dosage forms.


Assuntos
Excipientes , Ibuprofeno , Criança , Liberação Controlada de Fármacos , Excipientes/química , Humanos , Ibuprofeno/farmacologia , Polímeros/química , Pós/farmacologia , Impressão Tridimensional , Comprimidos/química , Tecnologia Farmacêutica/métodos
4.
J Pharm Pharmacol ; 74(10): 1467-1476, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34928372

RESUMO

OBJECTIVES: The aim of the work was to introduce 3D printing technology for the design and fabrication of drug-eluting contact lenses (DECL) for the treatment of glaucoma. The development of 3D printed lenses can effectively overcome drawbacks of existing approaches by using biocompatible medical grade polymers that provide sustained drug release of timolol maleate for extended periods. METHODS: Hot melt extrusion was coupled with fusion deposition modelling (FDM) to produce printable filaments of ethylene-vinyl acetate copolymer-polylactic acid blends at various ratios loaded with timolol maleate. Physicochemical and mechanical characterisation of the printed filaments was used to optimise the printing of the contact lenses. KEY FINDINGS: 3D printed lenses with an aperture (opening) and specified dimensions could be printed using FDM technology. The lenses presented a smooth surface with good printing resolution while providing sustained release of timolol maleate over 3 days. The findings of this study can be used for the development of personalised DECL in the future.


Assuntos
Lentes de Contato , Timolol , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Etilenos , Polímeros , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos
5.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34577546

RESUMO

The study was designed to investigate the feasibility of supercritical carbon dioxide (scCO2) processing for the preparation of simvastatin (SIM) solid dispersions (SDs) in Soluplus® (SOL) at temperatures below polymer's glass transition. The SIM content in the SDs experimental design was kept at 10, 20 and 30% to study the effect of the drug-polymer ratio on the successful preparation of SDs. The SIM-SOL formulations, physical mixtures (PMs) and SDs were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and dissolution studies. The scCO2 processing conditions and drug-polymer ratio were found to influence the physicochemical properties of the drug in formulated SDs. SIM is a highly crystalline drug; however, physicochemical characterisation carried out by SEM, DSC, and XRD demonstrated the presence of SIM in amorphous nature within the SDs. The SIM-SOL SDs showed enhanced drug dissolution rates, with 100% being released within 45 min. Moreover, the drug dissolution from SDs was faster and higher in comparison to PMs. In conclusion, this study shows that SIM-SOL dispersions can be successfully prepared using a solvent-free supercritical fluid process to enhance dissolution rate of the drug.

6.
Pharmaceutics ; 13(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452262

RESUMO

The development of personalised paediatric dosage forms using 3D printing technologies has gained significant interest over the last few years. In the current study extruded filaments of the highly bitter Diphenhydramine Hydrochloride (DPH) were fabricated by using suitable hydrophilic carries such as hydroxypropyl cellulose (Klucel ELFTM) and a non-ionic surfactant (Gelucire 48/16TM) combined with sweetener (Sucralose) and strawberry flavour grades. The thermoplastic filaments were used to print 3D fruit-chew designs by Fused Deposition Modelling (FDM) technology. Physicochemical characterisation confirmed the formation of glass solution where DPH was molecularly dispersed within the hydrophilic carriers. DPH was released rapidly from the 3D printed fruit-chew designs with >85% within the first 30 min. Trained panellists performed a full taste and sensory evaluation of the sweetener intensity and the strawberry aroma. The evaluation showed complete taste masking of the bitter DPH and revealed a synergistic effect of the sweetener and the strawberry flavour with enhanced sweet strawberry, fruity and aftertaste perception. The findings of the study can be used for the development of paediatric dosage forms with enhanced organoleptic properties, palatability and medication adherence.

7.
AAPS PharmSciTech ; 22(4): 141, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33884533

RESUMO

The taste of drug substances plays a key role in the development of paediatric formulations with suitable organoleptic properties. The aim of the study was to evaluate the taste masking effectiveness of Smartseal 30D and ReadyMix on a range of bitter drug substances such as diphenhydramine HCl (DPD), ibuprofen lysine (IBU-LS), and phenylephrine HCl (PPH) for the development of paediatric dosage forms. The drugs were microencapsulated in the polymer carriers at 10-20% loadings using spray-drying processing. Spray drying of drug formulations was optimized in terms of percent yield and encapsulation efficiency followed by physicochemical characterization in order to identify the drugs' physical state in the polymer microparticles. The in vivo taste masking efficiency was evaluated using human test panel and showed noticeable reduction of drug's bitterness at all loadings in comparison to the bulk substances.


Assuntos
Formas de Dosagem , Composição de Medicamentos , Paladar , Administração Oral , Criança , Humanos , Ibuprofeno/análogos & derivados , Ibuprofeno/farmacologia , Lisina/análogos & derivados , Lisina/farmacologia , Preparações Farmacêuticas , Polímeros , Solubilidade
8.
Pharmaceutics ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925577

RESUMO

Twin-screw granulation (TSG) is a pharmaceutical process that has gained increased interest from the pharmaceutical industry for its potential for the development of oral dosage forms. The technology has evolved rapidly due to the flexibility of the equipment design, the selection of the process variables and the wide range of processed materials. Most importantly, TSG offers the benefits of both batch and continuous manufacturing for pharmaceutical products, accompanied by excellent process control, high product quality which can be achieved through the implementation of Quality by Design (QbD) approaches and the integration of Process Analytical Tools (PAT). Here, we present basic concepts of the various twin-screw granulation techniques and present in detail their advantages and disadvantages. In addition, we discuss the detail of the instrumentation used for TSG and how the critical processing paraments (CPP) affect the critical quality attributes (CQA) of the produced granules. Finally, we present recent advances in TSG continuous manufacturing including the paradigms of modelling of continuous granulation process, QbD approaches coupled with PAT monitoring for granule optimization and process understanding.

9.
J Pharm Pharmacol ; 73(3): 300-309, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33793879

RESUMO

OBJECTIVES: Design and examine the effect of sirolimus-PEGylated (Stealth) liposomes for breast cancer treatment. In this study, we developed conventional and Stealth liposome nanoparticles comprising of distearoylphosphatidylcholine (DSPC) or dipalmitoyl-phosphatidylcholine (DPPC) and DSPE-MPEG-2000 lipids loaded with sirolimus as an anticancer agent. The effect of lipid grade, drug loading and incubation times were evaluated. METHODS: Particle size distribution, encapsulation efficiency of conventional and Stealth liposomes were studied followed by cytotoxicity evaluation. The cellular uptake and internal localisation of liposome formulations were investigated using confocal microscopy. KEY FINDINGS: The designed Stealth liposome formulations loaded with sirolimus demonstrated an effective in vitro anticancer therapy compared with conventional liposomes while the length of the acyl chain affected the cell viability. Anticancer activity was found to be related on the drug loading amounts and incubation times. Cell internalization was observed after 5 h while significant cellular uptake of liposome was detected after 24 h with liposome particles been located in the cytoplasm round the cell nucleus. Sirolimus Stealth liposomes induced cell apoptosis. CONCLUSIONS: The design and evaluation of sirolimus-loaded PEGylated liposome nanoparticles demonstrated their capacity as drug delivery carrier for the treatment of breast cancer tumours.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Sirolimo/administração & dosagem , 1,2-Dipalmitoilfosfatidilcolina/química , Células 3T3 , Animais , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos , Nanopartículas , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Sirolimo/farmacologia , Fatores de Tempo
10.
Int J Pharm ; 599: 120416, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647403

RESUMO

Prostate cancer is one of the prominent causes of cancer mortality in men all over the world and a challenge to treat. In this study, transferrin (Tf) bioconjugated solid lipid nanoparticles (SLNs) were developed and loaded with curcumin (CRC) for active targeting of prostate cancer cells. Curcumin is an anticancer agent, but its clinical applications are impeded due to the poor water solubility and bioavailability. Prepared blank Tf-SLNs showed minimal cytotoxicity while Tf-CRC-SLNs demonstrated significant in-vitro anti-proliferative activity compared to CRC-SLNs alone. Cellular uptake of Tf-CRC-SLNs were found to be significantly higher (p < 0.05/=0.01) compared to unconjugated SLNs or pure drug alone. Bioconjugated Tf-CRC-SLNs also showed improved early apoptotic and late apoptotic or early necrotic populations (6.4% and 88.9% respectively) to CRC-SLNs and CRC solution. Most importantly, in-vivo studies with Tf-CRC-SLNs in mice bearing prostate cancer revealed significant tumour regression (392.64 mm3 after 4 weeks, p < 0.001) compared to the control group. The findings of this work encourage future investigations and further in-vivo clinical studies on the potential of bioconjugated SLNs for cancer cure.


Assuntos
Curcumina , Nanopartículas , Preparações Farmacêuticas , Neoplasias da Próstata , Animais , Portadores de Fármacos , Humanos , Lipídeos , Masculino , Camundongos , Tamanho da Partícula , Neoplasias da Próstata/tratamento farmacológico
11.
Int J Pharm ; 593: 120147, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278493

RESUMO

In this study Fusion Deposition Modelling (FDM) was employed to design and fabricate a bilayer tablet consisting of isoniazid (INZ) and rifampicin (RFC) for the treatment of tuberculosis. INZ was formulated in hydroxypropyl cellulose (HPC) matrix to allow drug release in the stomach (acidic conditions) and RFC was formulated in hypromellose acetate succinate (HPMC - AS) matrix to allow drug release in the upper intestine (alkaline conditions). This design may offer a better clinical efficacy by minimizing the degradation of RFC in the acidic condition and potentially avoid drug-drug interaction. The bilayer tablet was prepared by fabricating drug containing filaments using hot melt extrusion (HME) coupled with the 3D printing. The HME and 3D printing processes were optimised to avoid drug degradation and assure consistent deposition of drug-containing layers in the tablet. The in-vitro drug release rate was optimised by varying drug loading, infilling density, and covering layers. Greater than 80% of INZ was released in 45 mins at pH 1.2 and approximately 76% of RFC was releases in 45 mins after the dissolution medium was changed to pH 7.4. The work illustrated the potential application of FDM technology in the development of oral fixed dose combination for personalised clinical treatment.


Assuntos
Tecnologia Farmacêutica , Tuberculose , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Comprimidos
12.
AAPS PharmSciTech ; 21(7): 276, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033890

RESUMO

The aim of this study was to introduce smectite clay matrices as a drug delivery carrier for the development of amorphous solid dispersions (ASD). Indomethacin (IND) was processed with two different smectite clays, magnesium aluminium and lithium magnesium sodium silicates, using hot melt extrusion (HME) to prepare solid dispersions. Scanning electron microscopy (SEM), powdered X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were used to examine the physical form of the drug. Energy-dispersive X-ray (EDX) spectroscopy was used to investigate the drug distribution, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic analysis was done to detect any chemical interaction between these two kinds. Both PXRD and DSC analyses showed that drug-clay solid dispersion contained IND in amorphous form. EDX analysis showed a uniform IND dispersion in the extruded powders. ATR-FTIR data presented possible drug and clay interactions via hydrogen bonding. In vitro drug dissolution studies revealed a lag time of about 2 h in the acidic media and a rapid release of IND at pH 7.4. The work demonstrates that preparation of amorphous solid dispersion using inorganic smectite clay particles can effectively increase the dissolution rate of IND.


Assuntos
Anti-Inflamatórios não Esteroides/química , Tecnologia de Extrusão por Fusão a Quente/métodos , Indometacina/química , Silicatos/química , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Excipientes/química , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
13.
Pharmaceuticals (Basel) ; 13(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781542

RESUMO

Numerous natural and synthetic clay minerals have proven to be excellent drug carriers for high drug-loaded and sustained release formulations due to their considerable ion exchange, adsorption, and swelling capacities. Moreover, the synthetic smectite clays have added advantages in terms of compositional purity and controlled cation exchange capacity in comparison to natural clays. This study involves the intercalation of theophylline (TP) in a synthetic clay, Laponite® (LP), followed by the inclusion of the resulting intercalates into sodium alginate (SA) beads to achieve pH-controlled drug release. Maximum intercalated drug incorporation of 68 mg/g was obtained by ion exchange at pH 1.2 and confirmed by an increase in basal spacing of the clay from 12.9 to 15.5 Å. TP release from the binary LP-TP intercalates in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was found to be 40% and 70%, respectively. LP-TP particles were also incorporated in an SA matrix via polymer crosslinking using CaCl2(aq) to improve the pH selective release. The ternary polymer-clay-drug composite particles effectively prevented the release of TP at low pH in SGF and resulted in sustained release in SIF, with 40% dissolution within 120 min.

14.
Drug Deliv Transl Res ; 8(6): 1781-1789, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29363036

RESUMO

On the basis of their large specific surface areas, high adsorption and cation exchange capacities, swelling potential and low toxicity, natural smectite clays are attractive substrates for the gastric protection of neutral and cationic drugs. Theophylline is an amphoteric xanthine derivative that is widely used as a bronchodilator in the treatment of asthma and chronic obstructive pulmonary disease. This study considers the in vitro uptake and release characteristics of the binary theophylline-smectite system. The cationic form of theophylline was readily ion exchanged into smectite clay at pH 1.2 with a maximum uptake of 67 ± 2 mg g-1. Characterisation of the drug-clay hybrid system by powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy confirmed that the theophylline had been exclusively intercalated into the clay system in an amorphous form. The drug remained bound within the clay under simulated gastric conditions at pH 1.2; and the prolonged release of approximately 40% of the drug was observed in simulated intestinal fluid at pH 6.8 and 7.4 within a 2-h timeframe. The incomplete reversibility of the intercalation process was attributed to chemisorption of the drug within the clay lattice. These findings indicate that smectite clay is a potentially suitable vehicle for the safe passage of theophylline into the duodenum. Protection from absorption in the stomach and subsequent prolonged release in the small intestine are advantageous in reducing fluctuations in serum concentration which may impact therapeutic effect and toxicity.


Assuntos
Composição de Medicamentos/métodos , Silicatos/química , Teofilina/química , Adsorção , Varredura Diferencial de Calorimetria , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
J Colloid Interface Sci ; 492: 157-166, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28086118

RESUMO

The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network.


Assuntos
Portadores de Fármacos , Composição de Medicamentos/métodos , Implantes de Medicamento , Varredura Diferencial de Calorimetria , Celulose/química , Portadores de Fármacos/química , Implantes de Medicamento/química , Liberação Controlada de Fármacos , Hormônios/química , Hormônios/farmacologia , Microscopia de Força Atômica , Modelos Moleculares , Análise Espectral Raman , Esteroides/química , Esteroides/farmacologia , Propriedades de Superfície , Difração de Raios X
16.
Int J Pharm ; 496(1): 52-62, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26387621

RESUMO

The article describes the application of a twin-screw granulation process to enhance the dissolution rate of the poorly water soluble drug, ibuprofen (IBU). A quality-by-design (QbD) approach was used to manufacture IBU loaded granules via hot-melt extrusion (HME) processing. For the purpose of the study, a design of experiment (DoE) was implemented to assess the effect of the formulation compositions and the processing parameters. This novel approach allowed the use of, polymer/inorganic excipients such as hydroxypropyl methylcellulose (HPMC) and magnesium aluminometasilicate (Neusilin(®)-MAS) with polyethylene glycol 2000 (PEG) as the binder without requiring a further drying step. IBU loaded batches were processed using a twin screw extruder to investigate the effect of MAS/polymer ratio, PEG amount (binder) and liquid to solid (L/S) ratios on the dissolution rates, mean particle size and the loss on drying (LoD) of the extruded granules. The DoE analysis showed that the defined independent variables of the twin screw granulation process have a complex effect on the measured outcomes. The solid state analysis showed the existence of partially amorphous IBU state which had a significant effect on the dissolution enhancement in acidic media. Furthermore, the analysis obtained from the surface mapping by Raman proved the homogenous distribution of the IBU in the extruded granulation formulations.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/química , Ibuprofeno/administração & dosagem , Compostos de Alumínio/química , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química , Ibuprofeno/química , Compostos de Magnésio/química , Tamanho da Partícula , Polietilenoglicóis/química , Silicatos/química , Solubilidade , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...